Considerations for Flexible Autonomy Within BDI Intelligent Agent Architectures

Marcus J. Huber

Intelligent Reasoning Systems

Oceanside, CA 92056

marcush@home.com

Abstract

This paper discusses issues related to autonomy within BDI-based intelligent agent architectures and applications.  One advantage that agent-based applications built upon formal theories such as BDI (Belief-Desire-Intention) theories have over standard application implementation paradigms is their explicit implementation of some of the mentalistic states, such as goals, that are typically associated with autonomy.  To capture the intuition that autonomy represents independence from external influences such as other agents, we define autonomy as the level of separation between these external influences and an agent’s internal structures, considering not only goals, but also intentions, beliefs, and capabilities. Taking an existing BDI architecture (JAM) as an example, we measure the existing autonomy level for each of these attributes and then introduce and discuss ideas related to architectural modifications and programming practices that support flexible and perhaps dynamic modification of an agent’s autonomy.

1. Introduction

To be one's own master is to be the slave of self.

Natalie Clifford Barney (1876-1972)

Autonomy is an intuitive but subtle characteristic of agency.  Our intuition with respect to autonomy is that it is an attribute that needs to be defined as a relationship between an agent’s internal structures and external influences.  Autonomy is therefore highly dependent upon the agent’s internal design (i.e., its architecture).  Belief-Desire-Intention (BDI) theoretic [Bratman 1987] architectures such as PRS [Georgeff and Lansky, 1987] and IRMA [Bratman, et al., 1988] have highly formalized internal structures that facilitate definition of autonomy with respect to these constructs.  In this paper, we begin with a definition of what we mean by both the terms agent and autonomy and then discuss the factors relevant to autonomy within BDI agent architectures in particular.  We show how an agent architecture can be concretely characterized by its level of autonomy and that it should be possible to design an agent architecture that facilitates programming agents that exhibits different levels of autonomy in different situations.

The remainder of the paper has the following structure.  In Section 2, we define autonomy and agency and discuss our proposed measure of a BDI agent’s autonomy.  We describe how our definition of autonomy results in four numeric autonomy-level measures that express how autonomous a BDI agent is from external influences.  In Section 3, we formalize the JAM BDI intelligent agent architecture in order to provide a concrete example of our autonomy measure and discuss aspects of the architecture that impact upon the architecture’s autonomy level.  In Section 4, we characterize JAM according to the level of autonomy for each of its major architectural components.  Then, in Section 5, we discuss possible modifications to the architecture and possible programming practices that provide flexible, dynamically adjustable agent autonomy.
2. Agency and Autonomy

2.1 Agency

A common requirement of agency by most theoretically founded intelligent agent architectures is that they must be goal-directed, in that the agent exhibit purposeful behavior and have an explicit representation of that which they are working toward (i.e., a goal).  BDI-theoretic agents introduce the additional constructs of beliefs and intentions to that of desires (the name of goals within BDI frameworks).  Beliefs are an explicit representation of the declarative knowledge of the agent.  Intentions are a representation of a commitment on the part of the agent to a task.  Formal models of BDI-theoretic agents employ a branching-time possible-worlds model, whereby beliefs, desires, and intentions are each represented by sets of possible worlds and accessibility functions that map possible worlds at one time point to possible worlds at the next time point (see for example [Georgeff and Rao, 1995]).  This temporal relationship between possible worlds imposed by the accessibility function represents the persistence of beliefs and goals until contradictory or competing beliefs and goals are encountered, and the continuity of the agent’s commitment to intentions.

A pragmatic aspect not considered within formal definitions of BDI systems is an agent’s capabilities, a representation of an agent’s functionality, but which must always be specified within a concrete agent framework.  Capabilities models may consist of low-level functionality (e.g., primitive functions) and/or high-level functionality (e.g., plans).  Concrete implementations of BDI agents such as UMPRS [Huber et al., 1993; Lee et al., 1994] and JAM [Huber, 1998] include such models.  Below, when discussing measures of autonomy, we will distinguish autonomy for each of beliefs, desires, intentions, and capabilities.

2.2 Autonomy

There is a wide range of definitions of the term autonomy.  According to the American Heritage Dictionary of the English Language,

autonomous (adjective): 1. Not controlled by others or by outside forces; independent: 2. Independent in mind or judgment; self-directed.

Synonyms of autonomy include: uninfluenced, unforced, uncompelled, uncommitted, unaffiliated, isolationist, unsociable, self-sufficient, self-supporting, self-contained, self-motivated, inner-directed, ungoverned, and masterless.  An antonym which provides additional insight is,

heteronomous (adjective): 1. Subject to external or foreign laws or domination; not autonomous.

Both definitions refer to some form of external influence, implying that autonomy is a relation and not a factor of an individual in and of itself.  Most of the synonyms also imply this feature of autonomy, although some, such as uncompelled and unforced, may be self-referential (i.e., “slaves to self” from the quote above).  For this reason, we believe that autonomy must be define relative to influences outside of an agent and cannot therefore be defined simply in terms of a single agent’s attributes.

The apparently key aspect of external forces within autonomy is missed by some researchers, however.  Covrigaru and Lindsay [Covrigaru and Lindsay, 1991] claim that an entity’s level of autonomy can be determined by looking only at the characteristics of an individual.  According to Covrigaru and Lindsay, an entity is “more likely” to be autonomous the more of the following features it exhibits: goal-directed behavior, movement, self-initiated activity, adaptability and flexibility, robustness, and self-sufficiency.  In their definition, an entity is autonomous if it has multiple top-level goals, some of which are homeostatic (i.e., need to be maintained over time rather than simply achieved and dropped), and it has freedom to choose between the goals.  They explicitly state that it does not matter where the goals came from (i.e., generated from internal processing or received from external sources).  Luck and d’Inverno [Luck and d’Inverno, 1995] also view goal-directed behavior as being an essential feature of agent autonomy.  However, in their formalization, they consider goals to be a derivative of motivations, which are non-derivational.  They define a motivation to be any desire or preference that can lead to the generation and adoption of goals.  They then define an autonomous agent to be anything that has motivations.  Their definition also does not concern itself with where the agent’s motivations originate (they imply internally, but this is not required). In both of these definitions, an agent’s motivations or goals could be completely dominated by an external force but the agent’s would still be considered autonomous.  We find this counterintuitive and incorrect because of the lack of reference to external influences as a key concept.

Castelfranchi [Castelfranchi, 1995] provides a definition of autonomy that is quite compatible with ours.  He defines autonomy as the amount of separation between external influences and an agent’s beliefs and goals.  Castelfranchi recommends a "double filter" upon goal autonomy, whereby external influences must be filtered through beliefs before an agent’s goals are modified.

Because we are interested in defining autonomy with respect to BDI agent architectures, we extend Castelfranchi’s ideas and define autonomy measures with respect to beliefs, goals, intentions, and capabilities.  However, in order to provide an explicit measure of autonomy with respect to an agent’s beliefs, in this work we remove Castelfranchi’s requirement that the agent must filter everything through its beliefs.  Defining autonomy with respect to all of these constructs seems reasonable to us.  For instance, it seems useful to be able to distinguish between agents whose beliefs are easily modified by external influences (e.g., an agent that “believes everything that it reads” (via perception) or “believes everything that it hears” (via communication with other agents)) from those that are less “gullible” because they perform more reasoning to verify that the information is accurate.  Similarly, it seems useful to distinguish between agents that blindly accept plans from other agents from those that inspect the plans to make sure they would not make the agent perform restricted actions (e.g., reformat the computer’s hard drive).

Within this paper, we define belief, goal, intention, and capability autonomy to be the number of representations or reasoning layers intervening between external influences and the agent’s internal representation of beliefs, goals, intention structure, and plan library, respectively.  We interpret each layer of reasoning represents an opportunity for the agent to examine the incoming information and to accept or reject internalizing the information or to perform some transformation on the information.  We interpret each distinct representation layer as representing a distinct semantic form of the information originating from external influences.  For example, an agent performing image processing make take edges within an image, joined them to form boundaries, then apply object labels to them. Our definition of belief autonomy is very similar to Castelfranchi’s definition of belief autonomy, which requires that an agent must perform reasoning about externally derived information before internalizing it. Our definition of goal autonomy is most similar to the definition of goal autonomy of Castlefranchi [Castlefranchi, 1995] and the social autonomy of Huhns and Singh [Huhns and Singh, 1998].  We know of no prior research that considers intention autonomy explicitly.  Our definition of capability autonomy is most similar to the definition of execution autonomy of Castlefranchi and also of Huhns and Singh.

In order for an agent to explicitly alter its level of autonomy, the agent would need to add or remove levels of reasoning and/or representation transformations between its internals and external influences.  Such an idea is depicted in Figure 1, where more or less autonomy could be realized by changing the separation between the external forces on the left and the agent’s internals on the right.[image: image1.wmf]Physical

Environment

Process

Agent

Agent

External Forces

Agent Internals

Beliefs

Goals

Intentions

Plans

Layers of Reasoning and/or

Representation

Increasing isolation from external influences

(i.e., increased autonomy)

Plans

Intentions

Beliefs

Goals

Figure 1. An agent’s level of autonomy may be characterized by how much isolation,

in terms of representational and reasoning layers,  the internal constructs of an agent

have from external influences.


3. Formalizing JAM

In this section, we formalize the JAM BDI agent architecture. The JAM architecture is based primarily upon PRS [Georgeff and Lansky, 1986; Georgeff and Lansky, 1987], but has also been influenced by the Structured Circuit Semantics (SCS) research of Lee and Durfee [Lee, 1996] and the Act plan formalism of Wilkins and Myers [Wilkins and Myers, 1995].  

In this subsection we will present a formalized representation of JAM and describe the JAM architecture in terms of our autonomy metrics.  We first present low-level JAM representations and move steadily through intermediate representations and functions toward the final high-level representations of beliefs, intentions and so on, and the functions that operate on these.  In the following, “(“ and “)” group terms, “[“ and “]” enclose optional terms,  “*” indicates zero or more repetitions of a term, “+” indicates one or more repetitions of a term, “(”  indicates concatenation of terms, and “(” and “|” indicate disjunction.

const

::= {( | (= number ( ( = string}

var

::= { ( | value(() = const}

varList

::= (var)+
Constants may be numbers or strings, while variables are dynamic placeholders for constants.  The function value-of(var) returns the constant currently held by variable var.  A variable list is simply a list of one or more variables.

arg

::= const | var

argList

::= (arg)*
Each argument of a function may be either a constant or a variable and a function’s argument list may consist of zero or more arguments.

proposition
::= label ( argList

belief (

::= proposition

worldModel (
::= (()*
(initial

::= file(
Each individual belief within a JAM agent is a simple proposition formed by a string label and an argument list.  A JAM agent’s World Model is formed by zero or more beliefs and is initially specified in a text file that is parsed by the agent at invocation.

condition (
::= relation ( argList , value(eval(()) = True | False

A condition is a function that when evaluated returns a Boolean value and is represented by a relational function and an argument list.

binding

::= { ((, ()  | v ( varList, ( ( const, value(v) = ( }

A variable binding provides a lookup table that maps variables to the values held by the variables.

goal (

::=(ACHIEVE | PERFORM | MAINTAIN ) ( proposition ( [:utility num]

goalList (
::= { (  | ( ( ( , intention-of(() = null }

(initial 

::= file(
Goals are represented by a goal type, a proposition, and an optional utility value.  Goals of type ACHIEVE and MAINTAIN relate procedural accomplishment of the goal with assertion of a belief.  Goals of type PERFORM do not have this semantic relationship with beliefs.  A JAM agent does not actually have an explicit goal list distinct from its Intention Structure.  We provide the notation to distinguish the set of goals for which an agent has not yet instantiated plans from the entire set of all goals on the Intention Structure, some of which do have intentions.  The JAM agent’s Goal List is initially specified in a text file that is parsed by the agent at invocation.

precondition
::= (()*
runtimecondition
::= (()*
body

::= procedure

effects

::= procedure

failure

::= procedure

attributes 
::= (attribute, value)*
plan (

::= ( ( | ( ) ( precondition ( runtimecondition ( procedure ( effects (  attributes

planLibrary (
::=(()*
(initial 

::= file(
Plans are a complex composition of components.  A plan can be either goal or belief invoked.  Preconditions and runtime conditions filter where the plan is applicable.  The procedural components of a plan are arbitrarily complex “programs” comprised of a wide range of constructs (e.g., iteration and conditional branching) and primitive actions.  The body component, which is the primary procedural component, may include subgoaling actions.  The effects component, executed when the body procedure completes successfully, and the failure component, executed when the plan fails during execution, may not contain subgoaling actions.  For a full description of JAM actions and constructs, see [Huber, 1998]. The JAM agent’s plan library is initially specified in a text file that is parsed by the agent at invocation.

intention (

::= ( ( ( ( (
intentionStack (

::= ( | (( ( ()+ , ( = goal-of(()

intentionStructure (
::= (()+
applicablePlanList (
::= (intention) *
Intentions are plans that are instantiated with their variables bound to values.  An intention stack is either a “barren” goal that has not yet had an intention selected for it, or it is a sequence of goals paired with intentions.  In the latter case, the first goal in the sequence is a top-level goal, the second goal is a subgoal for that top-level goal, and so on.  A JAM agent’s Intention Structure then, is a collection of intention stacks, which represents all of the competing tasks the agent is considering at any point in time.

generateAPL:

( ( ( ( ( ( (
selectAPLElement:
( ( (, ( = highest-utility(()

intend:


( ( ( ( (
sortIntentions:

( ( ( ( (
The JAM interpreter reasons over its unintended goals, available plans, and set of beliefs to create a list of possible intentions, of which it selects the highest-utility intention and adds it to the agent’s Intention Structure.  Every cycle through  the interpreter, the JAM interpreter sorts the intentions according to their utilities, which may have changed because of changes to World Model entries.

communication

(
percepts


(
Communication- and perception-based information is unconstrained by the JAM agent architecture and we provide symbology for it for reference purposes later.  Relevant information incorporated via communication and perception are at the representational level of beliefs, goals, plans, and possibly individual intentions.

executePlan

(: ( ( ( ( ( ( ( ( ( ( ( ( (
executeMetalevelPlan
(: ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
Plans permit an agent to reason about communicated information, perceived information, and its own beliefs and goals and then arbitrarily modify its beliefs and goals.   Plans actions can also possibly result in the parsing and incorporation of plans into the agent’s Plan Library. Metalevel plans are distinguished from “ground-level” plans by their access and manipulation of an APL and the selection and intention of one of the intentions within the APL to the agent’s Intention Structure.

executeObserver 

(: ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
The JAM architecture executes an optional procedure called the Observer every cycle through the interpreter.  The Observer procedure can be an ingress point for perceptual and communicative information and can access the agent’s World Model and APLs on the agent’s World Model.  The Observer can perform operations on an agent’s World Model and create top-level goals.  Like metalevel plans, the Observer has access to APLs placed on the World Model and can intend elements onto the Intention Structure, although this is not an intended use of the Observer and is not advised in real applications.

4. JAM Autonomy

In this section, we calculate the level of autonomy ( of the JAM agent architecture with respect to intentions (((), capabilities (((), beliefs (((), and goals (((), in that order.  Later, in Section 5, we discuss possible modifications to the agent architecture and possible application-development paradigms that provide improved flexibility of control over an agent’s autonomy level.

To calculate each (, we count the procedural and representational transformations between external influences and the agent’s internals for all possible sources for the attribute in question and take the minimum of these values.  Using the minimum function results in a conservative measure, as it provides a value that represents the shortest influence path into an agent’s internals.  With this formulation, a value of zero would indicate that external influences have a direct path into the agent’s internal structures and can have complete control over the agent.  A value of ( would indicate that external influences have no possible way of influencing the agent’s internal structures (and would probably indicate a completely sociopathic agent).  It is easy to see that our formulation results in autonomy levels that take on positive, odd values as an internal representation (world model, intention structure, etc.) is the final state derived from a final procedure and there can be zero or more [procedure ( representation] pairs preceding this final procedure.

4.1. Intention Autonomy

The Intention Structure can be modified, 1) during default interpreter reasoning, 2) during execution of metalevel plans, or 3) during Observer procedure execution.  From Section 3, we see that default interpreter reasoning results in at least five representational and functional steps [( ( ( ( ( ( generateAPL() ( ( ( selectIntention() ( ( ( intend() ( ( ] between initial inputs and the point where the Intention Structure is modified (( (( ( 5). Methods 2 and 3 rely upon an APL as input and results in the following representational and functional steps [( ( ( ( ( ( generateAPL() ( ( ( executeX ( (] (( (( ( 5, and where executeX stands for executeMetalevelPlan or executeObserver).   JAM therefore currently has an inherent architectural autonomy level of (( = min(5, 3, 3) = 3 with respect to its Intention Structure.  As mentioned earlier, metalevel plans are the intended place for manipulation of the Intention Structure.  However, since the Observer can potentially be used for this purpose too, it represents the shortest influence path.

4.2. Capabilities Autonomy

A JAM agent’s plans come from either 1) a file specified at agent invocation (we consider these to be internally generated), 2) during execution of plans, 3) during execution of metalevel plans, or 4) during Observer procedure execution.  According to our representation in Section 3, plans, metalevel plans, and the Observer each result in one level of functional separation (( , (, and ( respectively) between external influences and the agent’s plan library.  JAM therefore currently has an inherent architectural autonomy level of (( = min(3, 3, 1) = 1 with respect to its Plan Library. It might be more accurate to consider the autonomy level of methods 2 and 3 based upon the full reasoning and representation path for plan execution (( ( ( ( ( ( generateAPL() ( ( ( selectIntention() ( ( ( intend() ( ( ( sortIntentions() ( ( ( execute() ( ( ) which yields an (( of at least 9 with respect to these two options.  However, even if this less conservative interpretation is taken, the result is still (( = min(9, 9, 1) = 1 due to the Observer constituting the shortest influence path.

However, even an autonomy level of one means that an agent will not blindly incorporate plans from external sources, but that it has at least some insulation between the external influences and the agent’s internals.  In the case of plans, the low autonomy value of one is a little misleading.  For, even if a plan from an antagonistic source is added to an agent’s plan library, there is no way that that particular plan can be guaranteed to be executed.  Within JAM, the plan has to be applicable to a specific pre-existing goal or conclusion, which may never arise during normal execution.  However, once such a “virus” plan is executed, it essentially has complete control over the agent and could therefore force the agent to do anything, including becoming a “slave” to another agent if the plan was designed to accomplish this.

4.3. Belief Autonomy

A JAM agent’s World Model elements arise from either 1) a file specified at agent invocation (we consider these to be internally generated), 2) during execution of a plan, 3) during execution of a metalevel plan, or 4) during Observer procedure execution.  JAM’s autonomy level analysis is identical to that for its plan autonomy and yields an inherent architectural autonomy level of (( = min(3, 3, 1) = 1 when using the most conservative values (the less conservative interpretation yields (( = min(9, 9, 1) = 1 as in the case of (().

4.4. Goal Autonomy

The JAM architecture constrains goal autonomy in a manner very similar to its belief and plan autonomy.  In Section 3, we specified that the goals on the JAM agent’s Goal List arise from either 1) a file specified at agent invocation (we consider these to be internally generated), 2) during execution of plans, 3) during execution of a metalevel plan, or 4) during Observer procedure execution.  JAM therefore currently has an inherent architectural autonomy level of (( = min(3, 3, 1) = 1 when using the most conservative values (the less conservative interpretation yields (( = min(9, 9, 1) = 1 as in the case of (().

5. Toward Flexible Autonomy

In this section, we discuss how we can modify the JAM agent architecture to provide flexible and hopefully independent autonomy with respect to beliefs, goals, intentions, and capabilities.  JAM’s architecture currently has an inherent autonomy level of 1 for each of ((, (( and (( and an autonomy level of 3 for ((.  Maximal flexibility would be realized if the JAM architecture could be modified so that all autonomy level measures could be dynamically, contextually, varied between 1 and (.  We will discuss architectural modifications and programmer methods to flexibly increase ((, (( and (( and flexibly increase and decrease ((.

5.1. Flexible Architectural Autonomy

The JAM architecture already provides a minimal autonomy level of one with respect to beliefs, goals, and capabilities and therefore only needs to support increased autonomy for these attributes.  This implies adding reasoning levels and/or representation levels between these internal structures and external influences.  In Section 4, we saw that all of the ( values, except (( , were dominated by the Observer as the shortest influence path. An obvious architectural modification to increase autonomy with respect to these structures is to remove the Observer, resulting in an immediate increase of ((, (( and (( to 3 (or 9, depending upon interpretation).  There are also several additional domain-independent reasoning layers that come immediately to mind that might be reasonable to implement.  For example, the World Model might perform additional reasoning to ensure global belief consistency, or might reason about the credibility (we would have to add this attribute as an architectural feature) of the source, before adding a world model entry.  As another example, we can increase goal autonomy by adding a reasoning layer in front of the agent’s goal list to reason about goal coherency.  We might introduce plan inspection to make sure that a plan contains no “dangerous” actions before adding the plan to the Plan Library.  At some point, however, we are likely to run out of value-added domain-independent layers of reasoning and adding further layers to increase the autonomy measures ((, (( and (( simply becomes a gratuitous endeavor. 

Intention autonomy is not Observer-dominated, as the metalevel reasoning path provides the same level of separation as the Observer path.  The most direct method of reducing (( to 1 is to implement a means of incorporating intentions through the Observer (one level of procedural separation between an external source) and therefore make intention autonomy Observer-dominated.  There are complications with this, as specification of an intention requires a great deal of very specific information (at the minimum a specification of a top-level goal, a viable plan template for that goal, and a set of variable bindings that satisfy the plan’s context).

We may also realize higher levels of autonomy through the addition of higher-level representational layers where it seems reasonable.  Adding the concept of motivations to the JAM architecture, where motivations entail goals (ala Luck and d’Inverno), would increase (( by one.  The same can theoretically be done with beliefs, intentions, and capabilities, although it is not clear at this point what higher-level representations for these might be.

In order to support dynamically flexible autonomy, the JAM agent architecture would need to support context-dependent modification of the number of representation and procedural layers in Figure 1.  Architecturally-specified flexible autonomy would seem to be premature at this point and should probably be specified by the agent programmer according to domain-specific criteria.  To support this, primitive functions to disable and enable the Observer and various reasoning layers would have to be implemented.

5.2. Flexible Programmer-Determined Autonomy

Architectural modifications are one possible method of realizing flexible autonomy.  Another possible method of realizing this goal is by carefully structuring and designing an agent’s Plan Library and Observer procedure.  As discussed in Section 3, a JAM agent possesses only one level of separation between external influences and its World Model when considering an agent’s plans as fully capable of modifying an agent’s internal structures.  However, if the plan space is partitioned according to metalevel level (i.e., concrete plans, metalevel plans, meta-metalevel plans, and so on), the conceptual separation between external influences and the agent’s internal beliefs can be conceptually and practically increased one level for each level of metalevel reasoning.  In this case, each metalevel reasons about the appropriateness of how best to pursue goals or respond to changes in its world model. This of course assumes that the metalevel plans do not modify concrete beliefs themselves during their execution and that the plans are programmed in such a way as to ensure that the metalevel reasoning is guaranteed to be invoked.  Arbitrary levels of autonomy can then be realized through engineering and appropriate implementation of plan and metalevel plan contexts and preconditions.

6. Summary

This paper introduces a concrete definition of a measure of autonomy within BDI systems.  We define autonomy as the number of distinct representation and procedural layers between external influences and the agent’s internal structure independently with respect to beliefs, goals, intentions, and capabilities. We then characterized an example of a BDI-theoretic architecture by first formalizing and then characterizing the JAM agent architecture’s autonomy level with respect to each of these internal structures.  Finally, we discuss how we might modify the JAM agent architecture to support a wider range of autonomy levels and listed some architectural modifications and programmer practices that facilitate flexible, context-sensitive agent autonomy.

7. References

M. Bratman.  Intentions, Plans, and Practical Reason.  Harvard University Press, Cambridge, MA, 1987.

M. Bratman, D. Israel, and M. Pollack.  Plans and Resource-bounded Practical Reasoning.  Computational Intelligence, 4:349-355, 1988.

Cristiano Castelfranchi.  Guarantees for Autonomy in Cognitive Agent Architecture.  In Intelligent Agents – Theories, Architectures, and Languages, Michael Wooldridge and Nicholas Jennings editors, Springer-Verlag, pages 56-70, 1995.

Michael P. Georgeff and Anand S. Rao.  The Semantics of Intention Maintenance for Rational Agents.  In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 704-710, Montreal, Canada, August, 1995.

Michael Georgeff and Amy L. Lansky. Reactive Reasoning and Planning. In Proceedings of the Sixth National Conference on Artificial Intelligence, 677-682, Seattle, Washington, August, 1987.

Michael P. Georgeff and Amy L. Lansky. Procedural Knowledge. Proceedings of the IEEE Special Issue on Knowledge Representation, 74(10):1383-1398, October, 1986.

Michael Huhns and Munindar Singh.  Agents and Multiagent Systems: Themes, Approaches, and Challenges. In Readings in Agents, Michael Huhns and Munindar Singh editors, Morgan Kaufmann Publishers, San Francisco, California, 1998.

Marcus J. Huber, Jaeho Lee, Patrick Kenny, and Edmund H.Durfee. UM-PRS Programmer and User Guide. The University of Michigan, Ann Arbor MI 48109, 1993. [Available at http://members.home.net/marcush/IRS]

Marcus J. Huber. JAM Agents. Internal Document, Intelligent Reasoning Systems, Oceanside CA, 1998. [Available at http://members.home.net/marcush/IRS]

Kurt Konolige and Martha Pollack.  A Representationalist Theory of Intention.  In Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, Chambery, France, 1993.

Jaeho Lee. Structured Circuit Semantics.  Ph.D. Thesis, Ann Arbor, MI, 1996.

Jaeho Lee, Marcus J. Huber, Edmund H. Durfee, and Patrick G. Kenny.  UM-PRS: An Implementation of the Procedural Reasoning System for Multirobot Applications.  In Conference on Intelligent Robotics in Field, Factory, Service, and Space, 842-849, Houston, Texas, March, 1994.

Michael Luck and Mark d’Inverno.  A Formal Framework for Agency and Autonomy.  In Proceedings of the First International Conference on Multi-Agent Systems, MIT Press, pages 254-268, 1995.

David E. Wilkins and Karen L. Myers.  A common knowledge representation for plan generation and reactive execution.  In Journal of Logic and Computation, Vol. 5, Number 6, 731-761, December, 1995.

� EMBED MSDraw.Drawing.8  ���














� An example of a partial precursor to beliefs may be some formulation of the concept of percepts when associated with sensory (i.e., perceptual) inputs.





[image: image2.wmf]Physical

Environment

Process

Agent

Agent

External Forces

Agent Internals

Beliefs

Goals

Intentions

Plans

Layers of Reasoning and/or

Representation

Increasing isolation from external influences

(i.e., increased autonomy)

Plans

Intentions

Beliefs

Goals

Figure 1. An agent’s level of autonomy may be characterized by how much isolation,

in terms of representational and reasoning layers,  the internal constructs of an agent

have from external influences.

_970923955.unknown

